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Abstract

The present study considers an assembly of spherical particles, densely packed, between two vertical flat plates which
are at different temperatures. The flow due to such a temperature difference is investigated. The governing equations for
the flow of granular materials, taking into account the natural convection, are derived using a continuum model. For
a fully developed flow of these materials, the equations reduce to a system of coupled, non-linear ordinary differential
equations. The non-dimensional forms of the equations are integrated numerically. The results are then presented for
volume fraction, dimensionless velocity, and temperature profiles as functions of various dimensionless parameters
representing the following physical meaning: R, is the ratio of the pressure force to the force developed in the material
due to distribution of the void. R is the ratio of the viscous force to the gravity force and Rj is the product of the Prandtl
number and the Eckert number. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interest in the behavior of granular materials
has been primarily motivated by design problems
in the bulk handling of grain, sand and gravel,
powders, and other particulate solids. In processing
minerals, in many chemical processes, and preven-
ting or protecting against natural phenomena such
as avalanches or debris flows, it is essential to
understand the factors governing the packing and
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flow of powders and bulk solids [1]. Early
studies of the flow of bulk solids were mainly
concerned with the engineering and structural
design of bins and silos. The inaccuracies of these
theories, especially for the dynamic conditions
of loading or emptying, occasionally resulted in
the failure of the bin or silo. Furthermore, flowing
granular materials can be considered as the limiting
case of two-phase flow at high solid concentration
and high solid-to-fluid density ratios [2]. In
many applications, especially the cases of dense
phase granular flows, such as fluidized beds, slurry
transport, pneumatic and hydrolic transports, etc.,
one may have to use multiphase flow theories to



accurately predict the flow and behavior of each
phase [3, 4].

In general, the behavior of granular materials is
very complex, and its understanding requires the
merging of ideas from various fields of mechanics
such as fluid mechanics, plasticity theory, rheology,
and kinetic theory. Any theory attempting to de-
scribe the behavior of flowing granular materials
should embody several features and some unique
characteristics. For example, a bulk solid is not just
a solid continuum since it takes the shape of the
vessel containing it; it cannot be considered a liquid
for it can be piled into heaps; and it is not a gas for
it will not expand to fill the vessel containing it.
Perhaps the material that flowing granular mate-
rials most resemble is that of a non-Newtonian
fluid. Therefore, it seems reasonable to expect a the-
ory for flowing granular materials to exhibit char-
acteristics unique to viscoeclastic fluids such as the
normal stress effects. For a thorough and up-to-
date review of all these issues relevant to flows of
granular materials we refer the reader to a recent
article by Hutter and Rajagopal [5].

In a number of applications these materials are
also heated prior to processing, or cooled after
processing [6]. These contact dominated (dense
phase) flows have applications in certain industrial
equipment designed to heat, cool, or dry granular
materials [7]. Sullivan and Sabersky [8] studied
the heat transfer from a flat plate to various mate-
rials. They compared their experimental results to
an idealized model which they called the “discrete
particle model”. Later, Spelt et al. [9] broadened
the scope of the problem by studying the heat
transfer to granular materials flowing along an
inclined chute at higher velocities. Based on the
experimental results, they speculated that the high-
er velocities caused a decrease in the density of the
material and that the decrease in density caused
a reduction in heat transfer. Gudhe et al. [10]
studied the flow of granular materials down
a heated inclined plane, where the effect of viscous
dissipation was also considered.

Granular materials exhibit phenomena like nor-
mal stress differences in a simple shear flow, a phe-
nomena usually referred to as dilatancy [11]. The
normal-stress phenomenon is a characteristics of
non-Newtonian fluids and non-linear elastic solids.

One approach in the modeling of granular mate-
rials is to treat it as a continuum, which assumes
that the material properties of the ensemble may be
represented by continuous functions. One of the
early continuum models for flowing granular ma-
terials based on the principles of modern con-
tinuum mechanics was proposed by Goodman and
Cowin [12, 13]. This work was subsequently modi-
flied and improved upon by other investigators
[14, 15]. Another approach used in the modeling of
granular materials is based on the techniques used
in the kinetic theory [16].

In general, and in many ways, flowing granular
materials do behave like non-Newtonian fluids.
The flow due to natural convection of some non-
Newtonian fluids has received some attention in
recent years. For example, Rajagopal and Na [17]
studied the natural convection of a homogeneous
incompressible fluid of grade three between two
infinite parallel plates. They looked at the effect of
the non-Newtonian nature of the fluid on the skin
friction and the heat transfer coefficient. Szeri and
Rajagopal [18] studied the flow of a third-grade
fluid between two heated horizontal plates where
the shear viscosity was assumed to be temperature
dependent. Massoudi and Christie [19] studied the
natural convection of a homogeneous incompress-
ible fluid of grade three, between two infinite con-
centric vertical cylinders. Massoudi and Christie
[20] studied the effects of variable viscosity and
viscous dissipation on the flow of a third-grade
fluid in a pipe.
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Fig. 1. A sketch of the theoretical model.



In this work we consider the natural convection
of granular materials. The material is between two
infinite vertical flat plates which are at two different
temperatures (cf. Fig. 1). Using a continuum formu-
lation for the stress tensor, the governing equations
for the conservation of mass, momentum, and en-
ergy are developed. These equations are solved
numerically using the numerical procedures de-
veloped by Phuoc and Durbetaki [21].

2. Governing equations

The basic governing equations for a continuum
are the conservation of mass, momentum, energy,
and the entropy inequality [22-24]. The conserva-
tion of mass takes the form

0 .
T’j + div(pu) = 0, (1)
or

where 0/0t is the partial derivative with respect to
time. The balance of linear momentum is

d .
pd—l:=leT+pb, (2)

where d/dt is the material time derivative and b is
the body force vector. The energy equation in its
general form is

de .
pd—;=T-L—d1vq+pr, (3a)
where ¢ denotes the specific internal energy, q is the
heat flux vector, r is the radiant heating, and L is
the velocity gradient.

The Clausius—Duhem inequality is

pe —n0) <T-L — (q-grad 0)/0, (3b)

where 1 is the specific entropy and 6 is the temper-
ature and the dot denotes the material time deriva-
tive. For a complete study of a thermo-mechanical
problem, the Second Law of Thermodynamics (the
C-D inequality in this case), has to be included. In
other words, in addition to other principles in con-
tinuum mechanics such as material symmetry,
frame indifferent, etc., the Second Law also imposes
certain restrictions on the type of the motion

and/or on the constitutive parameters. Though
there have been a few studies, including Goodman
and Cowin [12, 13], which have proposed a ther-
modynamic analysis of a granular material, how-
ever, since there is no general agreement as to the
behavior or the functional form of the constitutive
relations and the fact that the Helmholtz free en-
ergy is not known, a complete treatment of the
present model used in our study is lacking. Espe-
cially, since the later studies indicated that there
were some discrepancies in the work of Goodman
and Cowin [25]. We therefore will not attempt to
carry out a thermodynamic analysis of the present
model; rather we use the results of Rajagopal et al.
[26, 27] to obtain either restrictions on the material
parameters or to use a simple and reasonable ex-
pression for these undetermined parameters. In the
next section we present the constitutive relations
which are needed for the closure in the problem.

3. Constitutive relations

As we can see from Egs. (2) and (3), we need to
model the stress tensor T and the heat flux vector q.
Of course, the specific internal energy ¢ and the
radiant heating r are also needed. However, due to
the kinematical assumptions which we will make
for the velocity and temperature fields, the left-
hand side of Eq. (3a) will be automatically satisfied
and therefore we do not need to specify ¢. With
regard to the radiation effect, we also assume that it
is negligible, and therefore r is eliminated from our
analysis. This leaves us with the task of modeling
the stress tensor T and the heat flux vector q. The
stress tensor T for flowing granular materials has
been the subject of extensive investigation in the
last two decades. A detailed review of all the rel-
evant issues can be found in Ref. [5]. In the present
study, we will focus on a constitutive relation ori-
ginally developed by Goodman and Cowin [12, 13]
which has subsequently been modified.

We assume that the stress tensor T is given by
[12, 28]

T = {Bo(v) + B1(v)Vv-Vv + By(v) tr D}1

+ Ba(v)Vv @ Vv + f5(v)D. 4)



where v denotes the volume fraction of the particles,
D is the symmetric part of the velocity gradient,
Bo(v) is similar to pressure in a compressible fluid
and is given by an equation of state, §,(v) is akin to
the second coefficient of viscosity in a compressible
fluid, f,(v) and B.(v) are the material parameters
that reflect the distribution of the granular mate-
rials and f;(v) is the viscosity of the granular mate-
rials. The above model allows for normal-stress
differences, a feature observed in granular materials.
In general, the material properties f§, through f,
are functions of the density (or volume fraction v),
temperature, and the principle invariants of the
stretching tensor D, given by

D = 1[(Vu) + (Vu)"], (5)

where u is the velocity vector of the particles. In
Eq. (4), 1 is the identity tensor, V is the gradient
operator, ® indicates the outer (dyadic) product of
two vectors, and tr designates the trace of a tensor.
Furthermore, v is related to the bulk density of the
material p, through

p = py (6)

where p, is the actual density of the grains at the
place x and time ¢ and the field v is called the
volume fraction (or the volume distribution) and is
related to porosity n or the void ratio e by

(7)

'=1—n= .
' 1 +e

In general, the material parameters f, through
B4 have to be measured experimentally. Rajagopal
et al. [27] have outlined such an experimental pro-
cedure in which an orthogonal rheometer can be
used to provide useful information about some of
these constitutive parameters.

With regard to the signs of f, through f4, in
Appendix A, we provide a sample calculation
which indicates that f,(v) is similar to pressure in
a compressible fluid and thus we can assume

Bolv) = kv. (8)
where

k<0, 9)

Rajagopal et al. [26] investigated the existence of
solutions for the flow of a granular materials repre-
sented by Eq. (4), flowing down an inclined plane
maintained at a constant temperature. They proved
two existence theorems for a range of material
parameters. Specifically, they found “the existence
of solutions in which v decreuses from the inclined
plane ro the free surface and vice versa. While the

former is physically more intuitive with the densifica-

tion of the material at the bottom due to the effect of
gravity, the latter is also mathematically possible. We
do not carry out any stability analysis of the solu-
tions and it may be that the second solution can be
ruled out on the basis of a stability analysis.” The
first theorem basically says that solutions exist for
all values of k < ko, where k, <0 and for some
values of (f/; + f4). Existence was only proved for
the cases when

By fa> 0. (10)

Based on the above observation and the experi-
mental evidence provided by Ahn [29] and Ahn
et al. [30] where multiple solutions were also ob-
served, we plan to do a parametric study. In ac-
cordance with the proposal made by Rajagopal and
Massoudi [28] we use the following forms for
f1 through f,, assuming that, in general, all these
functions would decrease monotonically with .
(The early works of Walton and Braun [31, 32]
based on particle simulation indicated that the
viscosity of flowing granular materials varied as
a quadratic function of v, while keeping D fixed.)
Thus, assuming that material parameters f,
through f3, are smooth functions of v, and using
a Taylor’s series expansion and neglecting terms of
order v* we have

Biv) = Bio+ v + friav? (11)
B2(v) = fag + Barv + Baav?, (12)
Bav) = Bso + B3y + Paxv?, (13)
Ba(v) = Bao + Parv + farv?, (14)
where fi,, ... 4, are constants. Furthermore, as

a limiting case, when there are no particles, i.e.
v = 0. the stress tensor T should vanish. Therefore,



the dependence of ff, and i3 on v should be such
that as v — 0, these functions also vanish. Hence we
must have

ﬁzo = 530 =0. (15)

Johnson et al. [33, 34] also used the same repres-
entation for 8, through f, as those proposed here.

Before we proceed with the discussion of the heat
flux vector q, we need to mention the pioneering
work of Bagnold [35, 36] as they have a relevance
to the present investigation. Bagnold [35] per-
formed experiments on neutrally buoyant, spheri-
cal particles suspended in Newtonian fluids,
undergoing shear in a coaxial rotating cylinder. He
was able to measure the torque and the normal
stress in the radial direction for various concentra-
tions of the grains. He observed two distinct, limit-
ing types of behavior. In the so-called “macro-
viscous” region, which corresponds to low shear
rates, the shear and normal stresses are linear func-
tions of the velocity gradient. In this region, the
fluid viscosity is the dominant parameter. In the
second region, called the “grain-inertia region” the
fluid in the interstices does not play an important
role and the dominant effects arise from the par-
ticle-particle interactions. He also observed that
both the shear and the normal stresses in this region
are proportional to the square of the velocity gradi-
ent. This is basically a non-linear effect. The stress
tensor which we use in this study captures the non-
linear phenomenon due to normal stress differences.
In addition, the kinematics of the present problem
resemble in some way the “grain-inertia region” of
Bagnold in that the interstitial effects due to fluid
are ignored and the flow due to particle—particle
interactions is due to natural convection.

Furthermore, we assume that the heat flux vector
q satisfies Fourier’s law, 1.e.

q=—KVo, (16)

where 6 is the temperature and K is the ther-
mal conductivity, which in general is a function of v
and 0.

4. Formulation of the problem

In general, whenever non-linear materials are
concerned, the solution procedure, i.e. the numer-

ical analysis for solving the governing equations
becomes more complicated. As a result, exact solu-
tions are indeed rare when it comes to the mechan-
ics and heat transfer studies of non-linear materials
or multiphase flows. Next to the exact solutions,
finding solutions to simple limiting boundary value
problems are extremely desirable. As it is, most of
the constitutive relations used in mechanics,
whether they are non-Newtonian fluids, turbulent
models, etc., when substituted in the general gov-
erning or balance equations, would produce a sys-
tem of partial differential equations which at times
are impossible to solve completely or to find any
solutions with the numerical techniques available.
Therefore, from a modeling point of view, it is
worthwhile to study problems where due to simpli-
fication of the kinematics of the flow, or the ge-
ometry of the case, or the boundary conditions
used, we have a system of (non-linear) ordinary
differential equations. The solution to these simpler
problems would serve us, in at least two different
ways: (i) providing us with some insight to the
nature of these non-linear constitutive relations,
and (i) providing test cases where the solution to
the general multidimensional equations can be
compared to. With these in mind, for the problem
under consideration, we make the following
assumptions:

(i) the motion is steady:;

(1) radiant heating r can be ignored;

(1ii) the constitutive equation for the stress ten-
sor is given by Eq. (4) and the constitutive equation
for the heat flux vector is that of Fourier’s law,
given by Eq. (16);

(iv) the density, velocity and temperature ficlds
are of the form

v = v(x) (17)

u = u(x)j (18)
0 = 0(x) (19)
pb = — po[1 — 90 — 0,)] 9j (20)

where 0, is a reference temperature (for
example 0, = (0, + 6,)/2), y is the acceleration



due to gravity, and 7 is the coefficient of thermal

expansion;

(v) furthermore, we assume
Polv) = kv (21)
Bav) = Ay + 2, (22)

where % is a constant and 8, f3,, B4 are assumed to
be constants. Assuming that the Fourier’s law of
heat conduction is appropriate for the temperature
range or conditions of this problem [37] we now
need to specify the dependence of thermal conduct-
ivity on other parameters. There have been some
studies with regard to porous materials [38-42],
but few with regard to flowing granular materials
[43]. In fact, Kaviany [39] presents a thorough
review of the appropriate correlations for the effec-
tive thermal conductivity for packed beds (cf. Table
3.1, p. 129), and a discussion on the effective ther-
mal conductivity in multiphase flows. In addition,
Whitaker [44,45] in his review articles also has
provided insight into this issue. As a first step, in
our analysis we will use a simple relationship where
the thermal conductivity is a linear function of the
volume fraction. [46, 47]

K =Kyl +3v), (23)

where { = (¥ — 1)/(y + 1). Here ¢ is the ratio of
conductivity of the particle to that of the matrix,
and K, is the thermal conductivity of the matrix.

We should remark here that due to the nature of
the “limiting” approximations that we have made,
Egs. (17)19) represent kinematical assumptions
and whether in reality there would ever be such
a steady unidirectional flow is hard to say. But if
such a solution to the approximated equations in-
deed exists, it would be interesting to know about
it. Eq. (20) is basically the Boussinesq’s approxima-
tion and it may not be a very good approximation
in the present problem. There is no doubt that the
interstitial fluid would play a role, and therefore, it
is necessary to consider a better approximation
than Eq. (20) in future. For a critical discussion and
analysis of the Boussinesq’s approximation, we re-
fer the reader to Ref. [48]. Similarly, the limitations
of Egs. (21) and (22) are already discussed. This
leaves us with the last phenomenological parameter

in our problem, namely the thermal conductivity.
As we mentioned before, there are many correla-
tions, mostly based on the limited experimental
data, where the dependence of the thermal conduct-
ivity on various other parameters such as temper-
ature, volume fraction, etc. are depicted. We use Eq.
(23) in the spirit of a simple approximation, indicat-
ing basically a linear dependence of the thermal
conductivity on the volume fraction.

With the above assumptions, the conservation of
mass is identically satisfied and from the balance of
linear momentum and energy we get

dv dv d?v
- — b
/\d\_ + 2B, +/54)d s 0, (24)
dv du
ﬂ(\+v) +[f31+2)dxdx
= — pyv[1 — 90 — 0n)1y (25)
d%0 dv do
] Yy
2K 1+ 300) 5 + 6Kl
— B+ ) <d“> (26)
’C

The boundary conditions to be used in this prob-
lem are:

Atx=—a
u=0, (27a)
0=0,. (27b)
Atx =a
u =20, (28a)
0 =0,, {(28b)

where 6, > 8,. For volume fraction, one can
assume v=v; at x=—a and v=v, at x = a.
However, it should be noted that in general v, and
v, are not known. Either these values are given
based on experiments or one can do a parametric
study. An alternative way of providing the neces-
sary boundary conditions for v is to use the sym-
metry condition and mass-averaged quantity (see



[10]). The boundary conditions for v are assumed
to be

dv

) =:J" vdx, (30)

where Q is given. It is obvious from Eq. (24) that
dv/dx =0 or v =constant is a solution to that
equation.

5. Numerical solutions

Let us define the dimensionless distance &, the
velocity @, and the temperature I by the following
equation:

u 0— 0,

= =— 31
ix (31)

e X Im
g_as d) 01"“62’

where U, is a reference velocity. The above (Egs.
(24)—(26)) become

d?v dv
il = 32
d>¢ dvde¢
f+ w2 Ry(1 + 2v)— —
Ry(v + v )déz + Ry(1 + ‘)df a
— v+ RpIN=0, (33)

dzz T e ae

d’r dvdl’ do I?
(1 4+3v)—+ 3 ! +R3(\'+v2)[d—¢g] =0

(34
The boundary conditions become:
Até=—1:
$p=0, I'=1% (35)
Até=1
¢p=0 I'=-1} (36)
and

dv
()., o

1
N = .[ v d¢, (38)

-1

where N = Q/a. The dimensionless parameters R,
R, R3, and Ry are given by

ka?
Ri=———r, (39)
"B, + Ba)
p3U,
= 40
2 zazpsga ( )
BIU3G
Ry=——">"2 41
P T2K(0, — 0,) e
Ry =7(0, —0,). (42)

These dimensionless parameters have the follow-
ing physical meaning: R, is the ratio of the pressure
force to the force developed in the material due to
distribution of the void. R, is the ratio of the
viscous force to the gravity force and R; is the
product of the Prandtl number and the Eckert
number. So in a sense, R, is related to a Reynolds
number for the particles, R; is a measure of the
importance of viscous dissipation, and R, is
a measure of the buoyancy effects due to the ther-
mal expansion.

Since Eq. (32) is independent of temperature and
velocity, it can be solved separately. With the con-
ditions given by Egs. (37) and (38) the distribution
of the volume fraction in the ¢-direction under the
actions of the pressure force and the force de-
veloped in the materials is obtained as

R (0 Ry\1I

The momentum equation, Eq. {33), and the en-
ergy equation, Eq. (34), are coupled and must be
solved together numerically using numerical pro-
cedures developed by Phuoc and Durbetaki [21]
and Phuoc and Massoudi [49]. The technique uses
the central difference approximation to discretize
Egs. (33) and (34). Since d¢p/d¢ and dI'/d¢E are not
known at ¢ = — 1, the technique requires that these
unknowns must be initially guessed so that values
of ¢ and I' throughout the calculation domain can
be evaluated. After the trial solutions are obtained
the known boundary conditions of ¢ and I' at



¢ = 1 are compared with the correspondent values
provided by the trial solutions. If the solutions at
this point do not agree with the known boundary
conditions another guess must be used and the
iteration is repeated. This procedure is continued
until the solutions for ¢ and I' provided by the
initial guess conditions converge to the given
values. In order to reduce the guess work, the
Newton-Raphson method is used for correcting
the initial guesses. The technique requires an addi-
tional set of Nyge X N ynknown (Node 18 the number of
the governing equations and N uewn 1S the
number of the unknown boundary conditions) diff-
erential equations that must be integrated simulta-
neously with the original governing equations.
These equations, referred to as the perturbation
equations, give the rate of change of the solutions of
the original differential equations with respect to
the guessed conditions. Thus, the technique reduces
the guess work and the computer time and it is
powerful for this type of application.

6. Results and discussions

Phuoc and Massoudi [49] have shown that
when granular materials are packed between two
vertical plates, which are at different temperatures,
the materials near the hot plate are heated and the
materials near the colder plate are cooled. As a re-
sult of such a temperature difference a natural con-
vection flow ensues and the materials move. The
motion of the materials is determined by param-
eters R,—R, and it is always associated with a for-
ward flow near the hot surface and a backward flow
in the region near the colder surface. They report
that the dimensionless parameter R, influences the
particle distribution significantly and the velocity
profiles to some extent but it does not have a signif-
icant effect either on the temperature distribution
or the flow pattern of the materials. With regard to
the effects of the dimensionless parameter R, they
show that when R; is large the forward flow is
dominant, the hot plate acts like a heat sink and the
heat is transferred from the materials to the plate.
When R; is small the reversed flow is significant
and the hot plate is the heat source that heats the
materials. The effects of parameter R, and R; on

the velocity and temperature profiles are discussed
in details by Phuoc and Massoudi [49] and will not
be repeated here.

Figs. 2 and 3 demonstrate the velocity and tem-
perature profiles respectively when R,. R;, R,, and
N are kept constant and R, is used as a parameter.
The calculations are done for the case that the
materials under consideration are uniformly dis-
tributed (R, = 0). Thus, the effect of dv/d¢ is elimi-
nated and the only effect that alters the velocity and
temperature profiles is that of the parameter R,. It
is obvious that when R, increases from 0.1 to 100
the velocity profiles are significantly altered while
only a slight change in the temperature profiles is
obtained.

As defined above, the dimensionless parameter
R; is the ratio of the viscous force to the gravity
force. It is large when the viscous force is dominant
and it is small when the gravity force is dominant.
Thus, the effect of R, is that the natural convection
flow of the materials might be in the gravity-con-
trolled regime when R, is very small. If R, is
increased the flow changes its characteristics and
it shifts to the viscous-controlled regime. In general,
however, it is believed that such a natural conven-
tion flow is in the gravity-viscous-controlled
regime.
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When the flow is in the gravity-controlled re-
gime, the materials density, which depends on tem-
perature, becomes an important factor that affects
strongly the velocity profiles. A forward flow is
expected to appear in the region where the mate-
rials are heated and a reversed flow is believed to
occur in the region where the materials are cooled.
Such a behavior is clearly shown in Fig. 2, for
R, less than 100. For example, when R, = (.1 the
materials move strongly with the forward flow in
the region near the hot plate and the reversed flow
near the cold plate.

When the flow is in the viscous-controlled regime
the flow becomes less intense and the materials
might not move at all if R, is very large, even
though the two hot and cold regions still exist. For
example, from Fig. 2 it is clear that when R, = 0.1
both the forward and the reversed flows are easily
detected. However, as R, increases to 0.5 or 1.0 the
reversed flow remains visible while the forward
flow is barely seen. When R, = 100, the velocity
profile becomes almost flattened with the zerc velo-
city conditions at the two plates. Fig. 3 shows that
changing R, does not have a significant effect on
the temperature profiles.

To investigate the effects of the temperature dif-
ference between the two plates the calculations are
done using R, as a parameter while other dimen-
sionless parameters are kept constant. The results
are shown in Figs. 4 and 5. Similar to R, parameter
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Fig. 4. Effect of the dimensionless parameter R, on the dimen-
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R, also shows a strong effect on both temperature
and velocity of the materials between the two
plates. That is, for small Ry, (dI'/d¢). -, is negative
and the material temperature is seen to decrease
almost linearly from the hot plate to the cold plate.
As R, increases, (dI'/d¢):— | increases and becomes
positive when R, becomes large. Thus, the temper-
ature of the materials near the hot plate increases to
higher than the temperature of the hot plate and
then it decreases and reaches the cold plate temper-
ature. For the velocity profile, the results indicate
a significant forward flow when R, is large and
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a significant reversed flow for smaller values of R,.
Since the forward flow is caused by the temperature
difference that exists between the two plates, it must
be significant when R, is large and it disappears
when R, is small. This is shown in Fig. 4 where the
forward flow is dominant when R, is greater than
10 and the reversed flow is the only flow that
prevails when R, is less than 3.

The variation of the velocity and the temperature
profiles with { as a parameter while others are kept
constant are shown in Figs. 6 and 7. It is reminded

Dimensionless Distance

Fig. 9. Effect of the dimensionless parameter N on the dimen-
sionless temperature profiles (R, =0: R, =0.1; R; = 0.01l;
R, = 10; { = 0.25).

that ( is defined as the ratio of (/—1)/( + 1). Here
y is the ratio of conductivity of the particle to that
of the matrix. Thus, meaningful values of { must be
from O to 1. It is shown that ¢ has little effect on
both the velocity and the temperature profiles. The
effect of the parameter N, which is the amount of
material that is fed in, on the velocity and temper-
ature profiles is shown in Figs. 8 and 9, respectively.
While N has little effect on the temperature and the
forward flow of the materials, it does affect the
reversed flow significantly. Such an effect is due to



the increase in the medium density which increases
as the volume fraction of the materials increases.

7. Conclusions

The flow and heat transfer of an assembly of
spherical particles, densely packed, between two
vertical flat plates which are at different temper-
atures have been studied. A continuum model is
used. For a fully developed flow of these materials,
the governing equations reduce to a system of
coupled, non-linear ordinary differential equations.
The results show that the materials move with
forward velocities near the hot plate and reversed
velocities near the colder plate. The motion of the
materials is determined by parameters R;-R,
which are defined to represent the effects of various
transport properties and the competitions between
the pressure force, the volume fraction distribution
forces, and the gravity forces.

Nomenclature

b denotes the body force vector

D the symmetric part of the velocity gradient
e void ratio e

g acceleration due to gravity

K thermal conductivity

Kn thermal conductivity of the matrix.
L velocity gradient

n porosity

0 defined by Eq. (30)

q heat flux vector

r radiant heating

R, defined by Eq. (39)
R, defined by Eq. (40)
R; defined by Eq. (
(

41)
R4 defined by Eq. (42)
T stress tensor
t time
U, reference velocity
u x-component velocity of the particles
u velocity vector of the particles
x x-coordinate
Po similar to pressure in a compressible fluid
B akin to the second coefficient of viscosity

in a compressible fluid
Bi.f.  material parameters that reflect the distri-
bution of the granular materials

B viscosity of the granular materials
5 constant

r dimensionless temperature

) coefficient of thermal expansion

¢ specific internal energy

{ defined as ( — 1)/(y + 1)

0., reference temperature (=(0, + 0,)/2)
0 temperature

v volume fraction of the particles

d dimensionless distance

0 actual density of the grains

¢ dimensionless velocity

1/ ratio of conductivity of the particle to that
of the matrix
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Appendix A

This is based on the report written by Rajagopal
and Massoudi [28]. In order to obtain a possible
representation for By(v) in Eq. (8), we assume that
the granular materials whose constitutive relation
is given by Eq. (4) are in a large container and no
flow is taking place (Static problem). Therefore

u =0, (A1)
D =0. (A2)
The equation of motion now reduces to

divT + pb =0 (A3)
and the constitutive Eq. (4) becomes

T =(fo+ 1 Vv-yV)l + B, Vv ® V. (A4)



Assuming that
V= v(y), (AS)

where y is the positive upward direction, the y-
component of Eq. (A3) becomes

d dv\? d dv\?
a'yi:ﬁo(v) + B1(v) <d_y> :| + d—y|:ﬁ4(v) (d—y> :|
—pvg =0 (A6)

where g is the acceleration due to gravity. Now, if
we assume that, as a special case

Bi=p3=0, (A7)
then the equilibrium Eq. (A6) is simplified to

d
gy [PoN] = povg. (A8)
¥

A Taylor series expansion for S(v),
Bolv) = Bor + Bo(O)y + O|v?], (A9)

where 0|v?| indicates terms of higher order than v.
Now, if there are no particles, i.e. if v = 0, the stress
tensor T should be zero. Substituting Egs. (A9) and
(A7) into Eq. (A4) and taking the limit as v — 0,
indicates that

Bor = 0. (A10)
Therefore, Eq. (A9) becomes
Bo(v) = Bo(O)y = kv, (A11)

where k is a constant. Now, we can go back to the
equilibrium Eq. (A8) and obtain the distribution of
v. Therefore, substitutimg Eq. (A11) into (A8), gives

dv

k= = pug. (A12)
dy

This equation can easily be integrated and its solu-

tion is given by

Vo= Ae(pxy/k))" (Al 3)

where A is the constant of integration. Evaluating
Eq. (A13) at two different heights y, and y,, where
Y2 >y, gives

V(,Vz) = v(.,Vl) C(P\glk)(yz ¥ (A]4)

Physically, it is reasonable to expect, under regular
conditions, that there would be more particles at
the bottom of the container than at the top. This
indicates that

v(y1) > v(y2). (A15)
If this condition is to be met, we must have:

Ps9
k

<0. (A16)

Since both p, and ¢ are positive, it follows that
k must be negative (k < 0).

References

[11 K. Hutter, Theoretical Glaciology, Reidel, Kluwer Aca-
demic Publishers, Hingham, MA, 1983.

[2] M. Massoudi, E.J. Boyle, A review of theories for flowing
granular materials with applications to fluidized beds and
solids transport, DOE Topical Report, DOE/PETC/TR-
91/8 (1991).

[3] S.L. Soo, Multiphase Fluid Dynamics, Science Press,
Gower Technical, Brookfield 1990.

[4] K.R. Rajagopal, L. Tao, Mechanics of mixture, World
Scientific, River Edge, NJ, 1995,

[5] K. Hutter, K.R. Rajagopal, On flows of granular materials,
Contin. Mech. Thermodyn. 6 (1994) 81-139.

[6] J.S. Patton, R.H. Sabersky, C.E. Brennen, Convective heat
transfer to rapidly flowing granular materials. Int. J. Heat
Mass Transfer 29 (1986) 1263 -1269.

[71 V.W. Uhl, W.L. Root, Heat transfer to granular solids in
agitated units, Chem. Engng Prog. 63 (1967) 81-92.

[8] W.N. Sullivan, R.H. Sabersky. Heat transfer to flowing
granular media, Int. J. Heat Mass Transfer 18 (1975)
97-107.

[9] J.K. Spelt, C.E. Brennen, S.H. Sabersky, Heat transfer to
flowing granular materials, Int. J. Heat Mass Transfer 25
{1982) 791--796.

[10] R. Gudhe, K.R. Rajagopal, M. Massoudi, Fully developed
flow of granular materials down a heated inclined plane,
Acta Mech. 103 (1994) 63--78.

[t1] O. Reynolds, Experiments showing dilatancy, a property
of granular material, possibly connected with gravitation,
Proc. Roy. Inst. Gr. Britain 11 (1886) 354-363.

[12] M.A. Goodman, S.C. Cowin, Two problems in the gravity
flow of granular materials, J. Fluid Mech. 45 (1971)
312-339.

[13] M.A. Goodman, S.C. Cowin, A continuum theory for
granular materials, Arch. Rational Mech. Anal. 44 (1972)
249-266.

[14] S.B. Savage, The mechanics of rapid granular flows, Adv.
Appl. Mech. 24 (1984) 289- 366.



[15] G. Ahmadi, A generalized continuum theory for granular
materials, Int. J. Non-Linear Mech. 17 (1982) 21-33.

[16] E.J. Boyle, M. Massoudi, A theory for granular materials
exhibiting normal stress effects based on Enkog’s dense gas
theory, Int. J. Engng Sci. 28 (1990) 1261 1275.

[17] K.R. Rajagopal, T.Y. Na, Natural convection flow of
a non-Newtonian fluid between two vertical flat plates,
Acta Mech. 534 (1985) 239-246.

[18] A.Z.Szeri, K.R. Rajagopal, Flow of a non-Newtonian fluid
between heated parallel plates, Int. J. Non-Linear Mech.
20 (1985) 91-101.

[19] M. Massoudi, 1. Christie, Natural convection flow of
a non-Newtonian fluid between two concentric vertical
cylinders, Acta Mech. 82 (1990) 1119,

[20] M. Massoudi, I. Christie. Effects of variable viscosity and
viscous dissipation on the flow of a third grade fluid in
a pipe, Int. J. Non-Linear Mech. 30 {1995) 687.

[21] T.X. Phuoc, P. Durbetaki. Boundary layer analysis of
unmixed combustible gases at the stagnation region: igni-
tion and extinction. In: R.W. Lewis and K. Morgan (Eds.)
Numerical Methods in Heat Transfer, Vol. 3 Wiley. New
York, 1985 149.

[22] C. Truesdell, Rational Thermodynamics, 2nd Ed.. Spring-
er, New York, 1984.

[23] C. Truesdell. A First Course in Rational Continuum
Mechanics. 2nd Ed. Academic Press Inc, San Diego (1991).

[24] C. Truesdell, W. Noll. The Non-Linear Field Theories of
Mechanics, 2nd Ed., Springer, New York, 1992.

[25] S.B. Savage, Gravity flow of cohesionless granular
materials in chutes and channels, J. Fluid Mech. 92 (1979)
53.

[26] K.R.Rajagopal. W. Troy, M. Massoudi, Existence of solu-
tions to the equations governing the flow of granular
materials, Eur. J. Mech., B Fluids, 11 (3) (1992) 265-276.

[27] K.R. Rajagopal, M. Massoudi, A.S. Wineman, Flow of
granular materials between rotating disks, Mech. Res.
Commun. 21 (6) (1994) 629 634.

[28] K.R. Rajagopal. M. Massoudi. A method for measuring
material moduli of granular materials: flow in &n ortho-
gonal rheometer, Topical Report, U.S Department of En-
ergy, DOE/PETC,;TR-90/3, 1990.

[29] H. Ahn, Experimental, analytical investigation of granular
materials, Ph.D. thesis, Caltech, 1989.

[30] H. Ahn, C.E. Brenner, R.H. Sabersky, Analysis of fully
developed chute, flow of granular materials. ASME
J. Appl. Mech 59 (1992) 109.

[31] O.R. Walton, R.L. Braun, Viscosity, granular temperature.
and stress calculation for shearing assemblies of inelastic,
frictional disks. J. Rheol. 30 (1986a) 949.

[32] O.R. Walton, R.L. Braun, Stress calculations for assem-
blies of inelastic spheres in uniform shear, Acta Mech. 63
(1986b) 73.

[33] G. Johnson, M. Massoudi. K.R. Rajagopal, Flow of
a fluid-solid mixture between flat plates, Chem. Engng Sci.
46 (1991a) 1713.

[34] G.Johnson, M. Massoudi, K.R. Rajagopal, Flow of a fluid
infused with solid particles through a pipe, Int. J. Engng
Sci. 29 (1991b) 649.

[35] R.A. Bagnold, Experiments on a gravity-free dispersion of
large solid spheres in a Newtonian fluid under shear, Proc.
Roy. Soc. London, Series A, 225 (1954) 49.

[36] R.A. Bagnold. The shearing and dilatation of dry sand and
the Singing mechanism, Proc. Royal. Soc. London, Ser.
A 295 (1966) 219.

[37] Liu, I-Shih, On Fourier's law of heat conduction, Contin.
Mech. Thermodyn. 2 (1990) 301.

[38] M. Kaviany, Principles of Covective Heat Transfer,
Springer, New York, 1994

[39] M. Kaviany, Principles of Heat Transfer in Porous Media,
2nd Ed. Springer, New York, 1995,

[40] D.A. Neild, A. Bejan. Convection in porous media. Spring-
er, New York, 1992.

[41] Buyevich Yu.A., On the thermal conductivity of granular
materials. Chem. Engng Sci. 24 (1974) 37.

[42] L.H. Tavman, Effective thermal conductivity of granular
porous materials. Int. Common. Heat Mass Transfer 23
(1996) 169.

[43] M.L. Hunt, Comparison of convective heat transfer in
packed beds and granular flows. Annu. Rev. Heat Transfer
3(1990) 163.

[44] S. Whitaker, Simultaneous heat, mass, and momentum
transfer in porous media: A theory of drying, Adv. Heat
Transfer 13 (1977) 119.

[45] S. Whitaker. Heat and mass transfer in granular porous
media. In: A.S. Majumda (Ed.) Advances in Drying. Hemi-
sphere, New York, (1981) 1-46.

[46] Y.M. Bashir, I.D, Goddard. Experiments on the conduct-
ivity of suspensions of ionically conductive spheres,
AIChE J. 36 {1990) 387-396.

[47] G.K. Batchelor, R.-W. OBrien, Thermal or electrical con-
duction through a grannular material, Proc. Roy. Soc.
London, Ser. A 355 (1977) 313--333.

[48] R.N. Hills, P.H. Roberts, On the motion of a fluid that is
incompressible in a generalized sense and its relationship
to the Boussinesq approximation. Stability Appl. Anal.
Contin. Media 1 (1991) 208.

[49] T.X. Phuoc, M. Massoudi. A numerical study of the flow of
granular materials between two vertical flat plates which
are at different temperatures, submitted for publication.

[50] J.E. Dunn, R.L. Fosdick, Thermodynamics, stability and
boundedness of fluids of complexity 2 and fluids of second
grade, Arch. Rational Mech. Anal 56 (1974) 191.

[517 J.E. Dunn, K.R. Rajagopal, Fluids of different types: criti-
cal review and thermodynamic analysis, Int. J. Engng Sci.
33 (1995) 689.

[52] R.L.Fosdick, K.R. Rajagopal, Thermodynamics and Stab-
ility of fluids of third grade. Proc. Roy. Soc. London A. 339
(1980) 351.

[53] LA Miiller, A thermodynamic theory of mixtures of fluids,
Arch. Rational Mech. Anal. 28 {1968) 1.



	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	12b: 


